The Mixture of Neural Networks Adapted to Multilayer Feedforward Architecture
نویسندگان
چکیده
The Mixture of Neural Networks (MixNN) is a Multi-Net System based on the Modular Approach. The MixNN employs a neural network to weight the outputs of the expert networks. This method decompose the original problem into subproblems, and the final decision is taken with the information provided by the expert networks and the gating network. The neural networks used in MixNN are quite simple so we present a mixture of networks based on the Multilayer Feedforward architecure, called Mixture of Multilayer Feedforward (MixMF). Finally, we have performed a comparison among Simple Ensemble, MixNN and MixMF. The methods have been tested with six databases from the UCI repository and the results show that MixMF is the best performing method.
منابع مشابه
Mixture of Neural Networks: Some Experiments with the Multilayer Feedforward Architecture
A Modular Multi-Net System consist on some networks which solve partially a problem. The original problem has been decomposed into subproblems and each network focuses on solving a subproblem. The Mixture of Neural Networks consist on some expert networks which solve the subproblems and a gating network which weights the outputs of the expert networks. The expert networks and the gating network...
متن کاملA Modular Neural Network Architecture with Additional Generalization Abilities for High Dimensional Input Vectors
iii Abstract In this project a new modular neural network is proposed The basic building blocks of the architecture are small multilayer feedforward networks trained using the Backpropagation algorithm The structure of the modular system is similar to architectures known from logical neural networks The new network is not fully connected and therefore the number of weight connections is much le...
متن کاملAn ]Efficient Multilayer Quadratic Perceptron for Pattern Classification and Function Approximation
Abs t rac t : W e propose an architecture of a multilayer quadratic perceptron (MLQP) that combines advantages of multilayer perceptrons(MLPs) and higher-order feedforward neural networks. The features of MLQP are in its simple structure, practical number of adjustable connection weights and powerful learning ability. I n this paper, the architecture of MLQP is described, a backpropagation lear...
متن کاملUsing the Taylor expansion of multilayer feedforward neural networks
The Taylor series expansion of continuous functions has shown in many fields to be an extremely powerful tool to study the characteristics of such functions. This paper illustrates the power of the Taylor series expansion of multilayer feedforward neural networks. The paper shows how these expansions can be used to investigate positions of decision boundaries, to develop active learning strateg...
متن کاملMulti-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کامل